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In this thesis, we study the magnetohydrodynamics stagnation point flow for the upper-

convected Maxwell fluid with the thermal radiation and Joule heating effects using the

Cattaneo-Christov heat flux model. The governing equations for velocity, temperature

and concentration are in the form of nonlinear partial differential equations. Similarity

transformations are used to convert the fundamental partial differential equations into

a system of nonlinear ordinary differential equations. The resulting nonlinear ordinary

differential equations are then solved by using the shooting method and the obtained

results are compared with those obtained by the MATLAB built-in routine bvp4c. The

effects of different parameters such as magnetic parameter, Prandtl number, Eckert

number, radiational parameter, Deborah number, non dimensional thermal relaxation

time parameter, Schmidt number on velocity, temperature and concentration profiles

are illustrated by graphs and tables.
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Chapter 1

Introduction

“The point in the flow field where the fluid’s velocity is zero is called stagnation point”.

The study of viscous, incompressible, fluid past a permeable plate or sheet has great

importance in the field of fluid dynamics. During the past few decades, the work on

stagnation point flow of an incompressible fluid past a permeable sheet has got significant

importance because of its large number of applications in manufacturing industries.

Some of the main applications are refrigeration of electrical gadgets by fan, atomic

receptacles cooling for the duration of emergency power cut, solar receiver, etc. The

study of two dimensional (2D) stagnation point flow was first investigated by Hiemenz

[1], whereas for getting the accurate solution, Eckert [2] extended this problem by adding

the energy equation. In view of that Mahapatra and Gupta [3], Ishak et al. [4], and

Hayat et al. [5] have studied the effects of heat transfer in stagnation point over a

permeable plate.

“The study of magnetic properties of electrically conducting fluids is known as Magne-

tohydrodynamics (MHD). The study of MHD fluid flow was first introduced by Swedish

Physicist, Alfven [6]”. The investigation of MHD flow past a heated surface has re-

ceived considerable attention because of its great applications in engineering problems

like petroleum industries, MHD power generators, crystal growth etc. In recent years,

mass and heat transfer on time dependent MHD natural convection flow of rotating

fluid past a permeable sheet with effects of heat transfer and radiation was examined

by Mbeledogu and Ogulu [7]. Kesvaiah et al. [8] investigated the time dependent MHD

convective flow past a semi-infinite vertical permeable plate. While the analytical study

of MHD heat and mass transfer oscilatory flow of micropolar fluid past a porous plate

or sheet investigated by Modather et al. [9]. “Mabood et al. [10] investigated the MHD

flow of viscous fluid in the existence of transpiration and furthermore detailed the in-

teraction of chemical reaction”. The impact of convective heat transfer in MHD flow of

1
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Jeffrey fluid model over a permeable plate is reported by Hayat et al. [11]. Mustafa et

al. [12] inspected the MHD flow of Maxwell fluid with convective heat transfer.

The study of flow and heat transfer generated by means of stretching medium has

plenty of significance in numerous industrialized developments, (e.g, in the process of

rubber and plastic sheets manufacturing, upgrading the solid materials like crystal,

turning fibers etc). The most widely used coolant liquid among them is water. In above

cases, flow and heat transfer investigation is of major importance because final product

quality be determined to bulk level on the basis of coefficient of skin friction and heat

transfer surface rate. Numerous investigators talked over different traits of stretching

flow problem. Some of them are Crane [13], Chaim [14], Liao and Pop [15], Khan and

Sanjayanand [16], and Fang et al. [17].

It is a well known fact that the phenomenon of heat transfer occurs between two bodies

(or within the same body) due to the difference of temperature. In various industrial

and engineering processes, the characteristics of heat transfer have huge demands in

microelectronics, transportation and fuel cells etc. For the prediction of heat transfer

analysis in various practical conditions, heat conduction law was suggested by Fourier

[18], but it has a limitation that for the temperature field it generates a parabolic energy

equation. To resolve this issue in classical Fourier law of heat conduction Cattaneo [19]

added the thermal relaxation time. After that, “Christov [20] changed the Cattaneo

law by time derivative in Maxwell-Cattaneo’s model with Oldroyd’s upper-convected

derivative to conserve material-invariant formulation. Straughan [21] used Cattaneo-

Christov model just to investigate thermal convection in an incompressible flow”. Tibulle

and Zampali [22] examined the uniqueness of Cattaneo-Christov heat flux model for

flow of an incompressible fluid. Khan et al. [23] numerically investigated the Cattaneo-

Christov heat flux model in viscoelastic flow due to exponentially stretching sheet.

The key feature for which the industrial product’s worth/quality can be attained and the

conserving ratio is made controllable is the magnetic field. For the purpose of observing

the flow past a porous medium/sheet under different circumstances of MHD, several

inquiries were made. Regarding this, Hayat et al. [24] and Pavlov [25] examined the

impacts of magnetic field.

Currently, in the fields of engineering and fluid science, heat transfer and boundary

layer flow of nano-fluid are the thrust areas of research. Many researchers examined the

convective boundary layer flow of nano-fluid past a stretched sheet e.g, [26–30].

In future, advancement in nano-technology is expected for making unbelievable changes

in our lives. A very big number of researchers are working in this area due to its great

use in the engineering and its linked areas. In the process of air cleaning, development of



Introduction 3

microelectronics, safety of nuclear reactors etc, heat and mass transfer of thermophoretic

magnetohydrodynamic flow consumes prospective uses. Choi [31] was the first who intro-

duced the idea of “nanofluids” and presented the report on the heat transfer properties of

nano-fluids. The thorough explosure on themophoretic flow was examined by Derjaguin

and Yalamov [32]. Heat and mass transfer of MHD thermophoretic stream above plane

surface was also studied by Issac and Chamka [33]. Thermophoresis effect on aerosol

particles was investigated by Tsai [34].

In fluid temperature, no doubt, viscous dissipation produces a considerable ascend. This

would happen because of change in kinetic motion of fluid into thermal energy. Viscous

dissipation is unavoidable in case of flow field in high gravitational field. Viscous flow

past a nonlinearly stretching sheet was deliberated by Vajravelu [35]. For external

natural convention flow over a stretching medium, the effect of viscous dissipation was

also studied by Mollendroff and Gebhart [36], whereas the impact of Joule heating and

viscous dissipation on the forced convection flow with thermal radiation was presented

by Duwairi [37].

Thesis contribution:

In this thesis we provide a review study of Shah et al. [38] and extend the flow analysis by

considering the additional effects of stagnation point and concentration equation. In this

work, the governing set of partial differential equations is converted into an arrangement

of nonlinear coupled ordinary differential equations by utilizing appropriate similarity

variables. The numerical solution has been found by using the numerical technique

namely shooting method and then the numerical calculations are compared with those

computed through the MATLAB builtin function bvp4c Elnashaie and Uhlig [39]. The

numerical solutions are also discussed for different physical parameters graphically and

tabularly.

Thesis outline:

The thesis is organised as follow:

In Chapter 2, some basic definitions and the relevant material is presented.

Chapter 3 contains a comprehensive review of Shah et al. [38]. “We consider the

steady, laminar, incompressible, two-dimensional MHD flow of UCM fluid past a semi-

infinite permeable sheet”.
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In Chapter 4, The work of Shah et al. [38] is extended by considering the additional

effects of stagnation point with concentration equation. The reduced system of ordi-

nary differential equations after applying a proper similarity transformation are solved

numerically. Graphs and tables describe the behavior of physical parameters.

Chapter 5 summarizes the research work and gives the main conclusion occurring

from the whole research and recommendations for the future work.

All the references used in this thesis are listed in Bibliography.



Chapter 2

Basic definitions and governing

equations

This chapter contains explanation of basic definitions, concepts, governing laws, meth-

ods, terminologies which are helpful in the next chapters Genick BarMeir [40].

2.1 Basic Definitions

Definition 2.1.1. (Fluid) “A fluid is a material which has the ability to flow”. Further,

fluids are categorised into liquids and gases. Liquids take the shape of the container while

gases do not.

Definition 2.1.2. (Fluid mechanics) “The old branch of physics that deals with the

study of fluids in motion or in the state of rest”. It is related with different fields such as

biomedicine, physical chemistry, geophysics and also some branches of engineering are

linked with it. It encompasses with fluid statics and fluid dynamics.

Definition 2.1.3. (Fluid statics) “In fluid statics, we study the behaviour of fluids

at the state of rest”. It is also referred to as hydrostatics.

Definition 2.1.4. (Fluid dynamics) “The branch of fluid mechanics that is concerned

with motion of fluids from one place to another”.

Definition 2.1.5. (Steady and unsteady flows) “Fluid flows can be classified as

steady or unsteady on the basis of the fluid properties. The flow is said to be steady,

if the fluid properties like velocity, density, etc. do not vary with time. Water flow with

5
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consistent release through a pipeline is an example of steady flow”. Mathematically,

∂B

∂t
= 0,

where B denotes any fluid property.

On the other hand “flow in which fluid properties change with time is known as un-

steady flow”. Water flow with varying release through a pipe is an example of unsteady

flow. Mathematically, In this case,
∂B

∂t
6= 0.

Definition 2.1.6. (Laminar and turbulent flows) “A flow is known as laminar if

the fluid flows in a regular manner, whereas the flow in which the fluid flows randomly

is said to be turbulent flow. The most common example of both flows can be observed

in the cigarette smoke”.

Definition 2.1.7. (Compressible and incompressible flows) “The fluid flow type

in which the density of the fluid is changed due to change in pressure is known as

compressible flow”. Generally, all gases are treated as compressible.

Dρ

Dt
= 0,

where, ρ be the fluid’s density and D
Dt is the material derivative. Mathematically, mate-

rial derivative is given by
D

Dt
=

∂

∂t
+ V · ∇. (2.1)

In above Eq.V indicates the fluid’s velocity and ∇ is the differential operator. In Carte-

sian coordinate system ∇ can be written as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

“The flow is known to be incompressible if the fluid’s density remains constant”.

Liquids are treated as incompressible.

Definition 2.1.8. (Uniform and non-uniform flows) “The flow type in which, at

all sections of the channel, fluid particles have equal velocity is known as uniform flow.

For instance, flow through a long straight pipe of uniform diameter is uniform flow.

Whereas if the fluid velocity is different at different points, then the flow is known as

non-uniform flow. Flow through a long pipe with varying cross section is consider as

non-uniform flow.”
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Definition 2.1.9. (Viscosity) “It is the resistance of the substance to flow. It depends

upon the size and shape of molecules. It is related with the concept of shear force”.

Mathematically, it is denoted by µ. Some examples are honey, oil, sulfuric acid etc.

Definition 2.1.10. (Kinematic viscosity) “It is defined as the ratio of the dynamic

viscosity µ to the density ρ of the fluid. It is also referred to as momentum diffusivity.

It is denoted by Greek letter ν”. Mathematically,

ν =
µ

ρ
.

In SI system of units the unit of kinematic viscosity is m2/s and dimension is [L2T−1].

Definition 2.1.11. (Dynamic viscosity) “It is defined as the tangential force per

unit area necessary for exchanging one horizontal plane with respect to the other.

Mathematically, it can be expressed as the ratio of shear stress to the rate of shear strain

and is denoted by µ.

Viscosity(µ) =
Shear stress

Rate of shear strain
.

In the above expression µ is called the coefficient of viscosity. It is also referred to as

absolute viscosity or dynamic viscosity or simply viscosity having dimension [ML−1T−1].

Unit of viscosity in SI system is kg/ms or Pascal-second [Pa.s]”.

Definition 2.1.12. (Newtonian and non-Newtonian fluid) “Those fluids which

obey the Newton’s law of viscosity are called Newtonian fluids. Water, air, oil are

few examples of Newtonian fluids”.

Mathematically, Newtonian’s fluid behaviour is expressed by the following equation

τ = µ
du

dy
.

Where, in this equation µ is the viscosity, du
dy is the deformation rate and τ is the stress

tensor.

On the other hand, “fluids which do not obey Newton’s law of viscosity are referred

to as non-Newtonian fluids. Shampoo, toothpaste, blood and ketchup are the main

examples of non-Newtonian fluids”.

Definition 2.1.13. (Porosity) “It is defined as the proportion of pores volume (va-

cant space) to the mass volume of a permeable media”. A permeable media generally

recognized by its permeability. An example of porosity is the quality of a sponge. The

momentum equation with MHD and porosity is defined as

ρ
DV

Dt
= ∇.τ − ρσB2V − ρkV. (2.2)
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Here B and k and are the magnetic field and porosity of the medium respectively.

Definition 2.1.14. (Thermal conductivity) “Thermal conductivity (κ) is the prop-

erty of a material related to its capability to transmit heat”. Mathematically,

κ =
q∇l
S∇T

,

where q is the heat passing through a surface area S and causing a temperature dif-

ference ∇T over a distance of ∇l. Here l, S and ∇T all are assumed to be of unit

measurement. In SI system of units the unit of thermal conductivity is W
m.κ and its

dimension is [MLT−3θ−1].

Definition 2.1.15. (Thermal diffusivity) “Thermal diffusivity is material property

for characterizing unsteady heat conduction”. Mathematically, it can be expressed as,

α =
κ

ρCp
,

where κ is the thermal conductivity of material, ρ represent the density and Cp be the

specific heat capacity respectively. The unit and dimension of thermal diffusivity in SI

system are m2s−1 and [LT−1] respectively.

Definition 2.1.16. (Boundary layer flow) “The layer of fluid adjacent to the solid

surface past which the fluid flows”. In fluid mechanics, boundary layer flows play a

significant role. The basic idea of boundary layer was first introduced by L. Prandtl.

There are two types of boundary layer flow.

• Hydrodynamic (velocity) boundary layer

• Thermal boundary layer

Definition 2.1.17. (Hydrodynamic boundary layer) “It is an area of the liquid

nearest to the solid surface, in which the flow pattern is specifically influenced by the

viscous drag from the surface”.

Definition 2.1.18. (Thermal boundary layer) “It is an area of the liquid nearest to

the solid surface, where fluid temperature is directly influenced by the heating or cooling

from the surface”.

2.2 Basic equations

Definition 2.2.1. (Generalized continuity equation) We know that, mass conser-

vation law states that “Mass of fluid can neither be created nor be destroyed”. Continuity
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equation is the mathematical expression which expresses the mass conservation law. For

compressible fluids, continuity Eq. can be written mathematically as

∂ρ

∂t
+∇.(ρV) = 0. (2.3)

where t is time, ρ is the fluid density and V is the velocity of the fluid. “If the fluid density

is constant in this case, above Eq. is referred to as Eq. of continuity for incompressible

fluids”.

Mathematically,

∇ ·V = 0.

Definition 2.2.2. (Generalized momentum equation) “Every fluid particle obeys

Newton’s second law of motion which is at rest or in steady state or accelerated motion.

This law states as the rate of change of momentum is equivalent to applied force”.

The mass of the framework is consistent, in this manner “Newton’s second law can be

composed as

m
DV

Dt
= F.

The flow of the fluid is represented by the differential equation as

ρ
DV

Dt
= ∇.τ + ρb,

where ρb is the net body force, τ is the Cauchy stress tensor and ∇.τ are the surface

forces”.

2.3 Heat transfer

It is basically, “the change in thermal energy of one medium, or media to another medium

due to temperature difference”. Medium may be two solids, a solid and a gas or liquid.

2.3.1 (Modes of heat transfer) The elementary modes of heat transfer are “conduc-

tion, convection and radiation”.

Definition 2.3.2. (Conduction) “It is the transfer of energy such as an electric current

or heat, through a substance. Heat conduction process depends on physical properties

of the material, temperature gradient, length of the path and the cross-section of the

material. In heat conduction process, heat energy is transferred and distributed from

atom to atom and molecule to molecule within the substance by direct method”.
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Definition 2.3.3. (Convection) “When a heated fluid like gas or liquid, is forced to

move far from the source, it takes the thermal energy with it. This kind of heat transfer

is known as convection”.

Definition 2.3.4. (Radiation) “It is the transmission of energy in the form of waves,

that generates from source and travels through space”. Radiation occurs through a

vaccum or transparent medium. For example, “sunlight is the form of radiation that

travels through space to our planet i.e., earth”. As there is no fluid in space, convection

heat transfer is not responsible for transfer of heat. Thus in this case, radiation brings

heat to earth.

2.4 Dimensionless numbers

(i) Prandtl number (Pr)

“Prandtl number is a dimensionless number. It is expressed as the ratio of momentum

diffusivity ν to thermal diffusivity α”. Numerically, we can formulate it as:

Pr =
ν

α
=
µCp
k
,

where Cp denotes the specific heat, µ is the dynamic viscosity and κ stands for thermal

conductivity.

(ii) Deborah number (γ)

“It is defined as the ratio of the relaxation time to deformation time”, i.e.,

γ =
λV

2x
.

(iii) Skin friction coefficient (Cf )

“Skin friction coefficient is the ratio between the fluid and the solid surface which mea-

sures the retardation of the fluid due to friction”. Mathematically,

Cf =
2τw
ρV 2

,

where τw denotes the wall shear stress, ρ denotes the density and V is the fluid velocity.

(iv) Eckert number (Ec)



Basic definitions and governing equations 11

A number with no dimensions used in continuum mechanics. It defines the “relationship

between flow’s kinetic energy and boundary layer difference”. Mathematically,

Ec =
V 2

Cp∆T
,

where V is the fluid velocity, Cp is the specific heat and ∆T is the difference of initial

and final temperature.

(v) Schmidt number (Sc)

It is the “ratio between viscosity ν and molecular diffusion D”. It is denoted by Sc and

mathematically we can write it as,

Sc =
ν

D
.

Definition 2.4.1. (Magnetohydrodynamics) “It also referred to as Magneto fluid

dynamics or hydromagnetics. It deals with the study of magnetic properties of electri-

cally conducting fluids. It is denoted by MHD”.

Definition 2.4.2. (Stagnation point) “Stagnation point of the flow field is a point

where the local velocity of the fluid is zero”.

Definition 2.4.3. (Joule heating) “It is the process in which heat is generated by

passing an electric current through a metal. Joule heating also referred to as resistive

heating and ohmic heating”.



Chapter 3

MHD effects and heat transfer for

the UCM fluid along with Joule

heating and thermal radiation

using Cattaneo-Christov heat flux

model

3.1 Introduction

In this chapter, we review a recently published article of Shah et al. [38]. In this article,

time independent, incompressible, two-dimensional laminar and magnetohydrodynamics

flow of an “upper-convected Maxwell fluid” past a semi-infinite porous plate is consid-

ered. The stretching sheet is assumed to have ambient temperature is T∞ and constant

temperature Tw. The heat flux model is introduced by Christov [41] has been considered.

We reconstruct the flow equations and the obtained set of partial differential equations

(PDEs) is then converted into an arrangement of nonlinear, coupled ordinary differential

equations (ODEs) by utilising some reasonable similarity transformations. After this,

the set of ordinary differential equations (ODEs) is solved by applying shooting method.

Finally, the numerical results are discussed for different parameters and also a compar-

ison of these numerical results with those computed by the MATLAB built-in routine

bvp4c is presented. “MATLAB bvp4c is a finite difference code that uses a collocation

method. Boundary value problems (BVP) for ordinary differential equations (ODEs)

can be solved using MATLAB bvp4c solver. It starts solution with an initial guess

12
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supplied at an initial mesh points and changes step-size to get the specified accuracy

Elnashaie and Uhlig [39]”.

3.2 Mathematical modeling

Consider the two-dimensional MHD, laminar, incompressible and steady state flow of a

fluid past a semi-infinite stretching sheet. The geometry of the flow model is given in

Figure 3.1.

Figure 3.1: Geometry for the flow under consideration.

Here Cattaneo-Christov heat flux model is under consideration. Along y-axis, a con-

stant magnetic field of strength B0 is applied perpendicular to x-axis. Further its is

supposed that the induced magnetic field is negligible. It is supposed that boundary

layer approximations are appropriate to the governing equations considered by Renardy

[42] for “Maxwell fluid models”. By making use of boundary layer approximations, the

arrangement of representing PDEs like continuity, momentum and energy with impacts

of Joule heating and thermal radiation for the MHD flow of UCM fluid by neglecting

the viscous dissipation and pressure gradient, can be expressed as follows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
+ λ1(u

2∂
2u

∂x2
+ v2

∂2u

∂y2
+ 2uv

∂2u

∂x∂y
) = ν

∂2u

∂y2
− σB

2
0

ρ
u, (3.2)

ρCp(u
∂T

∂x
+ v

∂T

∂y
) = −∇ · q + σB2

0u
2 − ∂qr

∂y
. (3.3)
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In the above equations u and v are the components of velocity along the x and y

directions respectively. Moreover, λ1 denotes the relaxation time, ρ denotes the fluid’s

density, B0 is constant magnetic filed, σ be the electric conductivity constant, kinematic

viscosity is denoted by ν, Cp is the specific heat, fluid temperature is T , qr is the radiative

heat flux. According to Christov [41], we have the following relation

q + λ2

(
∂q

∂t
+ V.∇q + (∇.V )q

)
= −k∇T, (3.4)

On eliminating q from Eqs. (3.3) and (3.4), we have

u
∂T

∂x
+ v

∂T

∂y
+ λ2

(
(u∂u∂x + v ∂u∂y )∂T∂x + (u ∂v∂x + v ∂v∂y )∂T∂y +

u2 ∂
2u
∂x2

+ v2 ∂
2u
∂y2

+ 2uv ∂2T
∂x∂y

)
= α

∂2T

∂y2
+ σ

B2
0

ρCp
u2 − 1

ρCp

∂qr
∂y

,

(3.5)

where V denotes the fluid velocity, λ2 is the relaxation time and thermal diffusivity is

denoted by α. Also, the radiative heat flux is given by

qr =
−4σ∗

3k∗
∂T 4

∂y
. (3.6)

“Expansion of T 4 about T∞ by making use of Taylor’s series is”:

“T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 +...”,

Ignoring the terms with higher order in (T − T∞) we get,

∂qr
∂y

= − 16T 3
∞σ
∗

3k∗
∂2T

∂y2
, (3.7)

where σ∗ is Stefan-Boltzman constant and k∗ is the absorption coefficient. The boundary

conditions for the above system of partial differential equations are,

u = U, v = 0, T = Tw, at y = 0, (3.8)

u→ 0, T → T∞, as y →∞. (3.9)

Now, we introduce similarity transformations or (dimensionless variables) Shah et al.

[38] which are useful in transforming the PDEs Eqs. (3.1) - (3.3) into the ODEs along

with the boundary conditions Eqs. (3.8) - (3.9).

η =

√
U

νx
(y), θ(η) =

T − T∞
Tw − T∞

, u = Uf ′(η), v =
−1

2

√
Uν

x
(f − ηf ′), (3.10)
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where the prime represents derivative w.r.t η, T∞ and Tw are the ambient and constant

fluid temperature at wall respectively and θ is the dimensionless temperature. The set

of corresponding ODEs is:

f ′′′ +
1

2
ff ′′ − β

2
(ηf ′

2
f ′′ + 2ff ′f ′′ + f2f ′′′)−Mf ′ = 0, (3.11)

1

Pr
(1 +

4

3
Rd)θ′′ +

1

2
fθ′ − γ

2
(3ff ′θ′ + f2θ′′) +MEcf ′

2
= 0. (3.12)

The boundary conditions for the governing ODEs are

f(η) = 0, f ′(η) = 1, θ(η) = 1, at η = 0, (3.13)

f ′(η)→ 0, θ(η)→ 0, at η →∞. (3.14)

In Eqs. (3.11) - (3.12), β is the Deborah number, Pr is the Prandtl number, M is the

magnetic parameter, radiational parameter is Rd, Ec is the Eckert number and γ is

the non dimensional thermal relaxation time parameter. Some important dimensionless

parameters are formulated as

β=λ1U
2x , Pr = ν

α =
µCp

k , M = σB0
2x

ρU , Rd = 4σ∗T 3
∞

kk∗ , Ec = U2

cp(Tw−T∞) and γ = λ2U
2x .

3.3 Numerical solution

As system of Eqs. (3.11) - (3.14) with the associated boundary conditions is coupled

and nonlinear, so approximate solution can not be found directly. For this we use the

numerical technique i.e., the shooting method to find the approximate solution. By

making use of this technique, we convert the system of higher order ODEs into the

system of first order ODEs.

f ′′′ =
1

2− βf2
(ηβf ′

2
f ′′ + 2βff ′f ′′ − ff ′′ + 2Mf ′), (3.15)

θ′′ =
3Pr

6 + 8Rd− 3Prγf2
(3γff ′θ′ − fθ′ − 2MEcf ′

2
). (3.16)

subject to boundary conditions

f(η) = 0, f ′(η) = 1, at η = 0; f ′(η)→ 0 as η →∞, (3.17)

θ(η) = 1, at η = 0; θ(η)→ 0 as η →∞. (3.18)
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Let us denote

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5. (3.19)

The system of first Order ODEs along with the boundary conditions becomes

y′1 = y2 y1(0) = 0 (3.20)

y′2 = y3 y2(0) = 1 (3.21)

y′3 =
1

2− βy12
(ηβy2

2y3 + 2βy1y2y3 − y1y3 + 2My2) y3(0) = s (3.22)

y′4 = y5 y4(0) = 1 (3.23)

y′5 =
3Pr

6 + 8Rd− 3Prγy21
(3γy1y2y5 − y1y5 − 2MEcy22) y5(0) = t. (3.24)

For solving above system numerically, we replace the domain [0, ∞) by the bounded

domain [0, η∞] where η∞ is some suitable real number. In the above system of equations

we have y3(η) and y5(η) at η = 0 i.e., s and t are missing conditions and are to be chosen

such that

y2(η∞, s, t) ≈ 0 and y4(η∞, s, t) ≈ 0.

3.4 Results and discussion

This section aims to investigate the numerical impacts of different parameters such as

Prandtl number Pr, non dimensional thermal relaxation time parameter γ, Deborah

numbers β, Eckert number Ec, magnetic parameter M and radiational parameter Rd

displayed graphically and tablularly. The computations are worked out for different

values of the effects of magnetic parameter M , Eckert number Ec, Prandtl number Pr,

Deborah number β and non dimensional thermal relaxation time parameter γ and also

discussed the effect of the physical parameters on velocity and temperature profile.

The impact of different parameters like, magnetic parameter, radiational parameter,

Eckert number, Prandtl number, radiational parameter is discussed graphically. In

Table 3.1 and 3.2 numerical values for temperature gradient −θ′(0) and velocity −f ′′(0)

are calculated for different physical parameters.
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-θ(0)
Pr γ β M Ec Rd Shooting bvp4c

0.72 0.5 0.5 0.1 0.1 0.23 0.3462925 0.3462925
0.3 0.26574360 0.265743
0.5 0.30250348 0.3025034
0.7 0.34220604 0.3422060

0.2 0.3802616 0.3802614
0.3 0.3689130 0.3689130
0.4 0.3575874 0.3575875

0.2 0.34510898 0.3451080
0.5 0.34629247 0.3462925
0.7 0.3469356 0.3469357

0.3 0.3303649 0.3303691
0.5 0.3175665 0.3175663
0.7 0.3068422 0.3068427

0.5 0.3266428 0.3266429
0.9 0.3069934 0.3069933
1.2 0.2922566 0.2922562

0.3 0.3605506 0.3605506
0.7 0.4437890 0.4437900
1.8 0.6809324 0.6809437

Table 3.1: Numerical results of -θ′(0) for different values of Pr, γ, β, M , Ec and Rd.

-f ′′(0)
Pr γ β M Ec Rd Shooting bvp4c

0.72 0.5 0.2 0.1 0.1 0.23 0.5169288 0.5169288
0.5 0.4822495 0.4822495
0.7 0.45824237 0.4582423

0.1 0.4822495 0.4822495
0.3 0.6450524 0.6450524
0.5 0.7803249 0.7803250
0.7 0.8972758 0.8972756

Table 3.2: Numerical results of -f ′′(0) for Pr = 0.72, γ = 0.5, Ec = 0.1 and Rd = 0.1.

For visualising the effects of different parameters on velocity f ′(η) and temperature pro-

file θ(η), graphs are plotted below. In every one of these estimations, we have considered

γ = 0.5, Pr = 0.72, M = 0.1, β= 0.5, Rd = 0.23 and Ec = 0.1. Figure 3.2 determines the

impact of magnetic parameter M on dimensionless velocity f ′(η). The graphical demon-

stration shows that for the increasing values of magnetic parameter M , there is decrease

in the velocity profile. It happens for the reason that Lorentz force which decreases the

horizontal flow risen by rising the magnetic parameter M . Figure 3.3 is the graphical

representation which shows the temperature profile for the various values of magnetic

parameter M . By this graph, it is observed that the effect of magnetic parameter M

on velocity and temperature profile is opposite. From Figure 3.4, it can be seen that by
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increasing the value of Eckret number Ec, temperature profile also increases. The effect

of radiational parameter Rd on dimensionless temperature θ is represented in Figure 3.5

. In this graph it is observed that on increasing the value of radiational parameter Rd,

temperature profile θ also increases. So, rate of heat transfer decreases with increase

in radiational parameter Rd, because of that temperature profile increases. In Figure

3.6, the influence of non dimensional thermal relaxation time parameter γ on temper-

ature profile θ is shown. This graph represents that on increasing the non dimensional

thermal relaxation time parameter γ, value of temperature profile θ decreases, because

of this fact that when non dimensional thermal relaxation time parameter γ increases

results decreases in time of deformation which causes the decrease in temperature of

fluid. Figure 3.7 shows the influence of Doberah number β on velocity profile f ′. For

the increasing values of Deborah number β, velocity increases near the plate while in

the rest portion of the boundary layer it diminishes for expanding β. From Figure 3.8,

it can be seen that by the increase in Deborah number β, temperature profile θ is in-

creased. Figure 3.9 illustrates the difference of temperature θ for different values of the

Prandtl number Pr. It is perceived that the temperature decreases, for the increasing

values of Prandtl number. Decrease in thermal boundary layer comes across when Pr is

larger and decrease in the thermal diffusivity causes rise in the Prandtl number. In this

way increment in Pr diminishes diffusivity and the variety in thermal characteristics

increments.
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Figure 3.2: Influence of M on the dimensionless velocity f ′
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Figure 3.5: Effect of Rd on the dimensionless temperature θ.
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Chapter 4

MHD stagnation point flow with

heat and mass transfer past a

porous sheet

4.1 Introduction

In this chapter we extend the flow model of Shah et al. [38] presented in previous

chapter. We will examine steady, incompressible, laminar, 2D magnetohydrodynamics

(MHD) stagnation point flow with concentration past a permeable plate. The stretching

plate has constant temperature Tw and ambient temperature is T∞ also Cw is the con-

stant concentration on wall and C∞ be the ambient concentration. The nonlinear par-

tial differential equations of velocity, temperature and concentration are converted into

a system of ordinary differential equations (ODEs) by using helpful similarity transfor-

mations. Numerical solution of these governing ordinary differential equations (ODEs)

is obtained by using shooting technique. Finally, the numerical results are discussed for

different physical parameters affecting flow and heat transfer and found to be in excellent

agreement with those computed by the MATLAB built-in routine bvp4c Elnashaie and

Uhlig [39]. Effect of various physical parameters on dimensionless velocity, temperature

and concentration are explained by graphs and tables.

4.2 Problem formulation

Considered the laminar, two-dimensional, steady and MHD stagnation point flow of a

fluid with effects of heat transfer past a porous medium. It is assumed that the fluid

23
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is taken as viscous and incompressible. The related set of equations like continuity,

momentum energy and concentration with the corresponding boundary conditions are

given in Eqs. (4.1) - (4.6).

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
+ λ1(u

2∂
2u

∂x2
+ v2

∂2u

∂y2
+ 2uv

∂2u

∂x∂y
) = ν

∂2u

∂y2
− ν

k0
u (4.2)

− σB
2
0

ρ
(u− u∞ + λ1v

∂u

∂y
) + u∞

du∞
dx

,

u
∂T

∂x
+ v

∂T

∂y
+ λ2

[
(u∂u∂x + v ∂u∂y )∂T∂x + (u ∂v∂x + v ∂v∂y )∂T∂y +

u2 ∂
2u
∂x2

+ v2 ∂
2u
∂y2

+ 2uv ∂
2T
∂x ∂y

]
= α

∂2T

∂y2
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
. (4.4)

From Eqs. (4.1) - (4.6), u and v are the components of velocity along x and y direction

respectively.Furthermore, fluid’s relaxation time is denoted by λ1, whereas λ2 is the

relaxation time of the heat flux. T is the temperature and ρ is the density of fluid. The

parameter k0 is taken as constant and represents the permeability of permeable medium.

Also, U∞ is the velocity of the stagnation point flow. B0 is the constant magnetic field,

σ is the constant of electrical conductivity. α is the thermal conductivity constant and

C is the concentration field. The associated boundary conditions for the above system

of equations are,

u = ax, v = 0, T = Tw, C = Cw, at y = 0, (4.5)

u→ U∞ = cx, T → T∞, C → C∞, as y →∞. (4.6)

Now, we introduce similarity transformations or (dimensionless variables) Noor Fadiya

Mohd Noor [43] which are useful in transforming the PDEs (4.1) - (4.4) into the ODEs

along with the boundary conditions (4.5) and (4.6)

η =

√
a

ν
y, u = axf ′(η), v = −

√
aνf(η), θ(η) =

T − T∞
Tw − T∞

and φ(η) =
C − C∞
Cw − C∞

,

(4.7)

where the prime represents derivative w.r.t η, T∞ and Tw are the ambient and constant

fluid temperature at wall respectively, θ is the dimensionless temperature and Cw is the

constant concentration and C∞ is the ambient concentration .
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The differential Eqs. (4.1) - (4.4) with the associated boundary conditions (4.5) and

(4.6) take the following form after applying the similarity transformation

f ′′′ + (1 +Mβ)ff ′′ − f ′2 + β(2ff ′f ′′ − f2f ′′′)− (M +K)f ′ +MA+A2 = 0, (4.8)

θ′′ + Prfθ′ − γPr(ff ′θ′ + f2θ′′) = 0, (4.9)

φ′′ + Scfφ′ = 0. (4.10)

The corresponding boundary conditions for above set of ODEs are:

f(η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1, at η = 0, (4.11)

f ′(η)→ A, θ(η)→ 0, φ(η)→ 0, at η →∞. (4.12)

Where in the above system of Eqs. the prime denotes the derivative w.r.t η. In Eqs.(4.8)

- (4.12), M is the magnetic field parameter, β is the Deboreh number, the parameter K

represents the permeability of the porous medium, Pr is Prandtl number. It depends

on the viscosity, thermal conductivity and specific heat of the fluid, A is the unsteady

parameter and is known as stretching ratio parameter. Moreover, γ is the non dimen-

sional thermal relaxation time parameter and Sc is the schmidt number.

M =
σB2

0
ρa , Pr =

µCp

k , K = ν
ak0

, β = λ1a, γ = λ2a, Sc = ν
D .

4.3 Numerical solution

As system of Eqs. (4.8) - (4.10) with the associated boundary conditions Eqs. (4.11) and

(4.12) is coupled and non-linear, so approximate solution can not be found directly. For

this we use the numerical technique i.e., the shooting method to find the approximate

solution. By making use of these technique, we convert system of higher order ODEs

into set of first order ODEs.

f ′′′ =
1

1− βf2
(−MA−A2 + (M +K)f ′ + f ′

2 − 2βff ′f ′′ − (1 +Mβ)ff ′′), (4.13)

θ′′ =
Pr

1− γPrf2
(γff ′θ′ − fθ′), (4.14)

φ′′ = −Scfφ′. (4.15)
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subject to the boundary conditions

f(η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1, at η = 0, (4.16)

f ′(η)→ A, θ(η)→ 0, φ(η)→ 0 as η →∞. (4.17)

Let us denote

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5, φ = y6, φ′ = y7. (4.18)

The nonlinear and coupled momentum, heat and concentration equations are transmuted

into a system of seven first order instantaneous equations. The set of first Order ODEs

along with the boundary conditions becomes

y′1 = y2 y1(0) = 0 (4.19)

y′2 = y3 y2(0) = 1 (4.20)

y′3 =

(
1

1− βy21

)[ −MA−A2 + (M +K)y2+

y2
2 − 2βy1y2y3 − (1 + β)y1y3

]
y3(0) = s (4.21)

y′4 = y5 y4(0) = 1 (4.22)

y′5 =
Pr

1− γPry21
(γy1y2y5 − y1y5) y5(0) = t (4.23)

y′6 = y7 y6(0) = 1 (4.24)

y′7 = −Scy1y7 y7(0) = u. (4.25)

For solving above system numerically, we replace the domain [0, ∞) by the bounded

domain [0, η∞] where η∞ is some suitable real number. In the above system of equations

we have y3(η), y5(η) and y7(η) at η = 0 i.e., s, t and u are missing conditions and are

to be chosen such that

y2(η∞, s, t) ≈ 0, y4(η∞, s, t) ≈ 0 and y6(η∞, s, t) ≈ 0.

4.4 Results and discussion

This section aims to examine the effect of different parameters M , K, A, β, Pr, γ

and Sc (i.e., magnetic parameter, porosity parameter, stretching ratio parameter, Deb-

orah number, prandtl number, non dimensional thermal relaxation time parameter and

Schmidt number) on dimensionless velocity, temperature and concentration in the form

of tables and graphs. Here, we include the conversation on numerical results obtained by
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shooting technique. Also the velocity, temperature and concentration profile is plotted

in which the influence of different parameters is discussed.

To visualize the effect of different parameters numerical results are attained and are

tabulated in Table 4.1 and 4.2. For the validity of present analysis, a comparison of

present results with Mahapatra and Gupta [3] and Ishak et al. [4] is discussed in Tables

4.3 and 4.4. In Table 4.3 and 4.4 we have taken M , γ, K =0.

−f ′′(0) -θ′(0)
β M A K γ Pr Sc bvp4c Shooting bvp4c Shooting

0.3 0.1 0.1 0.1 0.5 1.0 2.0 1.1355041 1.1355031 0.6050838 0.6050837
0.5 1.1828328 1.1828336 0.5912941 0.5912943
0.7 1.229482 1.229481 0.577870 0.577870

0.2 1.077498 1.077499 0.636992 0.636993
0.5 0.798767 0.798768 0.745345 0.745348
1.0 0.044135 0.044139 1.100055 1.100060

0.2 1.077498 1.077499 0.636992 0.636993
0.3 1.000720 1.000719 0.670242 0.670241
0.4 0.906847 0.906848 0.729453 0.729455

0.3 1.221272 1.221271 0.590773 0.590773
0.5 1.299390 1.299391 0.600664 0.600664
1.2 1.543654 1.543652 0.6758265 0.6758263

0.2 1.135504 1.135503 0.580542 0.580542
0.4 1.135504 1.135503 0.596509 0.596509
0.8 1.133991 1.133992 0.634370 0.634373

0.9 1.135504 1.135503 0.562295 0.562295
0.72 1.135504 1.135503 0.481124 0.481124
0.3 1.135504 1.135503 0.282923 0.282923

1.5 1.135504 1.135503 0.605083 0.605083
1.0 1.133991 1.133992 0.608772 0.608772
0.5 1.133991 1.133992 0.608772 0.608772

Table 4.1: Numerical results of -f ′′(0) and -θ′(0) for different values of β, M , A, K,
γ, Pr and Sc.
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-φ′(0)
β M A K γ Pr Sc bvp4c Shooting

0.3 0.1 0.1 0.1 0.5 1.0 2.0 0.8849071 0.8849078
0.5 0.8717088 0.8717083
0.7 0.858567 0.858568

0.2 0.909274 0.909273
0.5 1.011166 1.011166
1.0 1.336941 1.336940

0.2 0.909274 0.909273
0.3 0.937825 0.937826
0.4 0.990562 0.990561

0.3 0.868860 0.868861
0.5 0.864571 0.864571
1.2 0.891050 0.891051

0.2 0.884907 0.884907
0.4 0.884907 0.884907
0.8 0.886967 0.886966

0.9 0.884907 0.884907
0.72 0.884907 0.884907
0.3 0.884907 0.884907

1.5 0.737047 0.737047
1.0 0.582416 0.582415
0.5 0.412136 0.412136

Table 4.2: Numerical results of -φ′(0) for different values of β, M , A, K, γ, Pr and
Sc.

Pr A Mahapatra and Gupta [3] present results

bvp4c Shooting
1.0 0.1 0.603 0.603 0.603

0.2 0.625 0.625 0.625
0.5 0.692 0.692 0.692

1.5 0.1 0.777 0.777 0.777
0.2 0.797 0.797 0.797
0.5 0.863 0.864 0.864

Table 4.3: Comparison of -θ′(0) with Mahapatra and Gupta [3] for different values of
Pr and A by taking M = γ = K = 0
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A Ishak et al. [4] present results

bvp4c Shooting
0.01 -0.9980 -0.9980 -0.9980
0.10 -0.9694 -0.9694 -0.9694
0.20 -0.9181 -0.9181 -0.9181
0.50 -0.6673 -0.66726 -0.66726
2.00 2.0175 2.0175 2.01749
3.00 4.7294 4.72928 4.72925

Table 4.4: Comparison of -f ′′(0) with Ishak et al. [4] for different values of A by
taking M = γ = K = 0

To observe the effects of different parameters on dimensionless velocity f ′(η), dimension-

less temperature θ(η) and dimensionless concentration φ(η) graphs are plotted below.

Figure 4.1 shows the impact of Deborah number β on the dimensionless velocity f ′.

This figure represents that velocity profile f ′ decreases for increasing values of Deboreh

number β. The velocity profile f ′(η) for different values of porosity parameter K is plot-

ted in Figure 4.2. It depicts that for increasing values of porosity parameter K velocity

profile decreases. In general, rise in porosity parameter enlarge the porous layers of the

flow which rise the velocity boundary layer thickness. Figure 4.3 shows the impact of

Schmidt number Sc on concentration profile φ. The physical significance shows that

increasing in Schmidt number Sc means decrease in molecular diffusion. The concen-

tration is smaller for largest values of schmidt number Sc and is greater for smaller

values of Sc. Thus, as the schmidt number Sc increases concentration φ decreases. This

causes the concentration buoyancy effects to decrease, consequently there is a reduction

in the fluid velocity. In Figure 4.4, the influence of thermal relaxation time parameter

γ on temperature profile θ is represented. It is clear from fig that θ decreases when

the thermal relaxation time parameter γ, the ratio of relaxation time and deformation

time, increases. Figure 4.5 is the graphical representation which depicts the influence of

Prandlet number Pr on dimensionless temperature. It is seen that temperature profile

reduces for the rising estimations of Prandtl number. Greater the Prandltl number out-

comes the lower thermal diffusivity. In this way increment in Prandtl number decreases

conduction and henceforth the variation in thermal characteristics increases. Figure

4.6 is the graphical representation which shows the effect of magnetic parameter M on

velocity profile f ′. It depicts that rise in M , cause decrease in velocity profile, be-

cause increasing value of M has tendency to increase Lorentz force which yields more

resistance to the transport phenomena. Figure 4.7 shows the influence of M on dimen-

sionless temperature θ. It is clear from the fig that effect of magnetic parameter M

on velocity profile and temperature profile is opposite. Figure 4.8 indicates how the

Deborah number β affects the concentration profile φ. From this graph it is clear that

for the larger values of Deborah number β concentration profile φ increases. As the
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elasticity parameter or Deborah number lessens the flow speed, it implies that less fluid

is taken away at any given point bringing about the concentration profiles expanding.

Figure 4.9 depicts the impact the Deborah number β on the temperature distribution

θ. A diminishing in the stream-wise velocity component, can bring a decrease in the

amount of heat transferred on the surface sheet. Correspondingly, a lessening in the

transverse velocity component, suggests that the measure of new uid which is connected

from the lower-temperature region outside the boundary layer and encouraged towards

the sheet is reduced in this manner, diminishing the rate of warmth exchange. These

two consequences on the velocity in a similar course fortify each other. In this man-

ner, an epansion in the Deborah number expands the temperature distribution in the

fluid as depicted in Figure 4.9. Figure 4.10 shows the impact of porosity parameter K

on concentration profile φ. from this graph it is observed that for increasing values of

porosity parameter K cause decrease in concentration. Figure 4.11 demonstrates the

impact of porosity parameter K on temperature profile θ. An expansion in the porosity

parameter is relied upon to diminish the quantity of heat transfer from the plate to the

fluid, as recommended by fig. That is, an expansion in the porosity parameter expands

temperature of the liquid at any given point over the sheet. In Figure 4.12, the effect of

magnetic field parameter M on the concentration profile φ is displayed. From this graph

it can be seen that for the bigger estimations of magnetic parameter M there is lessening

in concentration φ. The reduction of flow velocity as the consequence of expanding the

quality of the magnetic field makes the liquid fixation increment as less liquid is taken

downstream at any given point.
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Chapter 5

Conclusion

In this research work, the study of incompressible, laminar, steady and two-dimensional

magnetohydrodynamic flow of an “upper convected Maxwell fluid” past a semi-infinite

porous plate due to thermal radiation and Joule heating by using “Cattaneo-Christov

heat flux model” is discussed and is extended by considering stagnation point with

concentration equation. The associated set of nonlinear partial differential equations

(PDEs) of velocity, temperature and concentration are reduced by using a helpful sim-

ilarity transformation. Numerical solution of these modeled ordinary differential equa-

tions (ODEs) is attained by using shooting technique. A numerical correlation has shown

for different physical parameters influencing flow and heat transfer and found to be in

excellent agreement with MATLAB built-in function bvp4c. Impact of different physical

parameters such as magnetic parameter M , β the Deborah number, non dimensional

thermal relaxation time parameter γ, Prandtl number Pr, radiational parameter is Rd,

Eckert number Ec, porosity parameter K, schmidt number Sc on velocity, temperature

and concentration profiles are discussed graphically and tabularly.

Conclusions which are obtained:

• Because of strong magnetic parameter M causes diminish in velocity and increa-

ment in temperature.

• With the increase in Deborah number β temperature increases, while the velocity

decreases in the horizontal direction.

• Temperature profile rises while extending the radiation parameter and a same

effect of Eckert number is seen on the temperature field.

• On temperature profile Prandtl number has decreasing effects.

37
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• Velocity field f ′ decreases by enlarging M .

• Temperature field θ increases with an increase in M .

• Velocity filed f ′ decreases for increasing values of β.

• By increasing the values of Prandtl number results decrease in temperature θ.

• Increasing the values of schmidt number Sc causes decrease in concentration φ.

5.1 Future recommendations.

The present model has utilized many generalizations to emphasis on the principal ef-

fects of slip parameter, temperature dependent thermal conductivity and viscosity. A

motivating area is to examine the impact of different nano particles, second order slip

at the boundary, viscous dissipation and heat transfer of non-Newtonian fluids. Most

likely there is a possibility for the trial chip away at such frameworks.
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